GDTM: Graph-based Dynamic Topic Models
نویسندگان
چکیده
منابع مشابه
dynamic coloring of graph
در این پایان نامه رنگ آمیزی دینامیکی یک گراف را بیان و مطالعه می کنیم. یک –kرنگ آمیزی سره ی رأسی گراف g را رنگ آمیزی دینامیکی می نامند اگر در همسایه های هر رأس v?v(g) با درجه ی حداقل 2، حداقل 2 رنگ متفاوت ظاهر شوند. کوچکترین عدد صحیح k، به طوری که g دارای –kرنگ آمیزی دینامیکی باشد را عدد رنگی دینامیکی g می نامند و آنرا با نماد ?_2 (g) نمایش می دهند. مونت گمری حدس زده است که تمام گراف های منتظم ...
15 صفحه اولDynamic Relational Topic Models
This paper presents the Dynamic Relational Topic Model, a new dynamic topic model that incorporates both document text and relationships for discovering the underlying topics in document collections and their evolution over time. We derive an approximate variational inference algorithm for our model and demonstrate its effectiveness over previous approaches by analyzing papers in Computer Scien...
متن کاملContinuous Time Dynamic Topic Models
In this paper, we develop the continuous time dynamic topic model (cDTM). The cDTM is a dynamic topic model that uses Brownian motion to model the latent topics through a sequential collection of documents, where a “topic” is a pattern of word use that we expect to evolve over the course of the collection. We derive an efficient variational approximate inference algorithm that takes advantage o...
متن کاملExperiments with Dynamic Topic Models
General summary of news content is a task under the general heading of“information summarisation,” and it is recognised as a way of overcoming information overload. How does one summarise a large number of articles with their time as well as topical content? Here we introduce one technique, dynamic topic models, built using discrete non-parametric techniques, and demonstrate our software that c...
متن کاملScalable Generalized Dynamic Topic Models
Dynamic topic models (DTMs) model the evolution of prevalent themes in literature, online media, and other forms of text over time. DTMs assume that word co-occurrence statistics change continuously and therefore impose continuous stochastic process priors on their model parameters. These dynamical priors make inference much harder than in regular topic models, and also limit scalability. In th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Progress in Artificial Intelligence
سال: 2020
ISSN: 2192-6352,2192-6360
DOI: 10.1007/s13748-020-00206-2